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Abstract. We analyze four bounding schemes for multilinear functions and theoretically compare
their tightness. We prove that one of the four schemes provides the convex envelope and that two
schemes provide the concave envelope for the prodyetvafiables ovelRfr.
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1. Introduction

This paper is concerned with the bounding of multilinear functions, which are
defined as:

Zai l—[yj 1)

i=1 jed;

Multilinear functions are the building blocks of a variety of nonconvex op-
timization problems. For example, they appear in bilinear, quadratic, and mul-
tiplicative programs (cf. [13]). In addition, multilinear functions arise when the
Reformulation-Linearization Technique [18] is used to approximate the convex
hull of general classes of mathematical programs.

Bounding multilinear functions has been an important subject in mathematical
programming for over three decades now. Several linearization techniques have
been developed for reformulating multilinear-01 programs into mixed-integer
linear programs (cf. [7, 8, 3, 4, 10, 12, 11]). However, there is relatively little work
done for bounding multilinear functions of continuous variables [14, 2, 9, 6, 15,
16].

McCormick [14] gives a set of four hyperplanes for bounding,. Al-Khayyal
and Falk [2] prove that two of these hyperplanes provide the convex envelope of
y1y2; while the other two the concave envelope. In general, convex envelopes of
multilinear functions on a unit hypercube are known to be polyhedral. Rikun [15]

* This research was conducted while the author was at the University of lllinois at Urbana-
Champaign.
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develops necessary and sufficient conditions for polyhedrality of convex envelopes
and illustrates how these conditions may be used in constructing convex envelopes.
Rikun [15] also provides an analytic formula defining some faces of the convex
envelope of a multilinear function and gives an explicit formula for the convex
envelope of the function

P
Z Yiyj
i=1
J#i
over the unit hypercube. Also over the unit hypercube, Sherali [16] develops ex-
plicit formulae for the convex envelopes for the multilinear functions with coef-
ficients that are alh-1 or —1 via examining the convex hull representations of
these functions obtained by applying the Reformulation—Linearization Technique
[1,17].
One can also bound (1) via bounds for monomial functions, which are defined
as:

p
o’ (y) =[] 2
=1

The most common approach to bound the monomial over the unit hypercube is to
use

p
max{ > y;—p+1,0 3)
j=1

as the underestimating function and

min{yj:j=1,...,p} (4)

as the overestimating function. Crama [6] proves that (3) and (4), provide, re-
spectively, the convex and concave envelope for the monomial function in (2). In
addition, [6] analyzes situations where this bounding technique leads to the convex
and concave envelopes for multilinear functions over a unit hypergutig”.

It is well understood [6, 15] that bounding multilinear functions via (3)—(4)
often leads to a poor approximation and, in addition, may require more hyperplanes
than the convex envelope for (1). Unfortunately, finding the convex or concave
envelope of a multilinear function on a unit hypercube i& & —hard problem [5].
Furthermore, most current results for envelopes of (1), as well as (3)-(4), are valid
only over the unit hypercube. An affine transformation of variables is thus required
in order to employ these results in a more general setting. Consequently, the use
of the above-mentioned bounding schemes becomes somewhat problematic in the
context of branching in branch-and-bound algorithms. This motivates the further
study of bounds for (2) foy € R?.
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Hamed [9] develops three bounding schemes for (2) whenR3: the arith-
metic interval method, the logarithmic transformation method, and the exponent
transformation method. The present paper considers these three bounding schemes
when extended to the product of arbitrarily many variables. In addition, we develop
a fourth bounding scheme, which is a variant of the interval method. Our main
result is an analytical comparison of the bounds obtained by these four bounding
schemes.

The remainder of this paper is organized as follows. In Section 2, we derive
four bounding schemes for (2). Three of these schemes apply forR?” and
one scheme requires strictly positive variables. Under the assumptiory that
R”, Section 3 presents theoretical comparisons of the tightness of the bounds that
the bounding schemes provide. We provide results on lower and upper bounding
functions — it is the sign of; in (1) that determines which of these two bounding
functions of (2) must be used in bounding (1). The results include new proofs for
the convex envelopes in (3) — (4); earlier proofs were provided in [6, 15, 16]. We
further prove that one of the four lower bounding schemes provides the convex
envelope and two provide the concave envelope of (2). Finally, conclusions are
provided in Section 4.

2. Bounding Schemes

This section develops and compares four lower bounding schemes for monomial
functions in (2). These bounds are based on arithmetic intervals, recursive applic-
ation of arithmetic intervals, logarithmic transformation, and exponent transform-
ation. We denote the four lower bounding schemes\hyraT, Loga, andExpo,
respectively. We adopt the following notation for any functitn

a concave upper bounding function pf

a convex lower bounding function gf

f of £ constructed by Scheme
J of f constructed by Scheme

[~ | =

.
concy : the concave envelope gf
convy : the convex envelope of

2.1. ARITHMETIC INTERVALS (Al)

Lety; € [yf,yj-]],j =1,...,p.Forp =2,
Of —yD7 —y2) >0

and

1=y —y5H =0
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imply:
y1ys +yiv2 —yi'y3 )
Y1yz = max L L L,,L :fAI(y)
Yiys +yry2 — yiys
Similarly,

Y =y -y >0

and
1=y (5 —y2) =0
imply:

_{mﬁ+ﬁh—ﬁﬁ s
y1y2 < min UL v [ = P
Y1iyy +y1Y2 — Y12

It is well-known thatyp? and?; are the convex and the concave envelope of
y1y2, respectively [2]. In generah first generates valid underestimators of (2) by
properly multiplying the variable bounds inequalities. Each of the nonlinear terms
in each valid underestimator is then lower bounded, (,afhds finally constructed
by taking the maximum of all linear lower bounding functions of each and every
valid underestimator gp”. For further illustration, consides = 3. From

1=y 2 —y5) (s —y5) =0

O0f =y Y —y2)(y3—y3) =0

WV

Of = yD2 =y (s —y3) =0

1=y =y (3 —y3) =0
we obtain:
Y1Y2Y5 + Y1Y5 Y3 + Y1 y2y3
—Y1Y5 Y5 — YL Y25 — Y1 V5 Y3+ VI V5 V5
y1y2y5 + y1ys ya + yi y2y3
—y1Y5 ¥§ — ¥1 yavy — ¥ ¥3 ya + ¥ v3 v
Y1Y2y3 = max v 3 v ®)
yiy2yz + Y1y y3+ y1 y2y3
—y1y5ys — y{ yay§ — i y5y3+ y{ y5y§
y1y2y§ + y1ys y3 + yi y2ya

=18 5 — vEvoyy — yEvY ya 4+ yEvy vy
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Each bilinear term in (5) is then lower bounded by the maximum of two linear
functions, and the resultirv_gil is the maximum of the 32 4-23) linear functions.

The construct 0§73, is similar.

P P
THEOREM 1. ¢? (p =2,3,...) is the maximum of /=4 &) Y-12 (2) linear
functions, whereg,; denotes the number of linear functions ti#tgenerates to

lower boundk-cross-product terms, =2, ..., p — 1.
Proof. First write out the variable bounds inequalities:
y—y; =0, j=1...p (6a)
yi—yr=0 j=1...p (6b)

To obtain a lower bounding function of (2), take an even number of factors from
(6a) and multiply them by the factors from (6b) for the remaining variables. That
is,

[ToY =vn [T 0i—yhH =0

jel jeP\I
where
P=1{12...,p}
and
I := {i : the factor involvingy; is taken from (6a}, |I| = even

For the casd = ¢,

p
[Toi-yH=o0
j=1

gives:
p p p—1
[Toi=dowi [T =22 2o wiv TT wit
j=1 i=1  j#i i1=1ip>iq jinin
) . (7)
G L D3 I E e v B B
i=1  j#i j=1

Above, each of(5) bilinear terms is lower bounded by a function that is the
maximum of two linear functions, each ¢f) trilinear terms is lower bounded by
the maximum of 32 linear functions, and each of {fi¢ k-cross-product terms,
2 <k < p—1,islower bounded by a function that is the maximunggflinear
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functions. The resulting is a lower bounding function of (2) that is the maximum

P
of [T/, E,E") linear functions.
Notice that the numbers of bilinear, trilineat,., (p — 1)-cross-product terms
in the nonlinear lower bounding function likewise constructed for the cd$es

2,4,...,2|5], respectively, are the same as those in (7) and that ther(ag’)are
possible ways to formI| = [ forl = 2,4,... ,2L§J. This gives the desired
result. a

As shown in Theorem 1, construction @AfI for p > 4 embeds computation of
_ﬂlu' henceg., foralll = p — 2, p — 4, .... The next theorem is concerned with

—p .
Paz-

THEOREM 2. g% (p = 2,3, ...) is the minimum of [/, E,f]") Zié (#) linear
functions, whereg, fork =2, ..., p — 1 are as defined in Theorem 1.

Proof. Refer to the proof of Theorem 1. We need to combine the inequalities
(6a)-(6b) so as to produce

p

— l—[ y; = underestimating functian
j=1

We achieve this by requiring/ | to be odd this time and following the procedure
given in the proof of Theorem 1. Now apply the same reasoning as in the proof of
Theorem 1. 0

REMARK 1. The number of linear maximands fgf; grows doubly exponen-
tially in p. For examplej;, is the maximum of 536,870,912 linear functions.
This implies that.I may be practically useful only in the context of a column/row
generation scheme.

2.2. RECURSIVE ARITHMETIC INTERVALS (rAl)

The rationale behind the developmentrafl is that construction of the convex

and concave envelopes of the product of two variables can be accomplished easily.
Factorable programming techniques [14] can then be used to utilize these bounds in
building bounds for the product ¢f variables. The following two-step procedure
summarizesAI which operates on any ordering of the variables:
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Step 1.Recursively replace each bilinear term in (2) with a new variable until the
right hand side of (2) is replaced by a single variable. For example,

yiy2 y3..-Yp-1Yp

=p+1
———
=:Yp+2

%,—z
=iy2p-2

=1y2p-1

Step 2.Linearly lower bound each of thg — 1 introduced variables,e., the

bilinear terms, with the maximum of two linear functions:
U U U, U
2 YiYip T Vi Yie = YV,
y] :yflyJZ >£rAI(yj1’yj2)=max L L L.L
YirYjp ¥ Y Yiz = YjnVjo

forall j = p+1,...,2p — 1, wherej; and j, are the indices of the
two original problem variables whose product is identified with varigble
By interval arithmetic, the bounds on the introduced variables are given by

L e mi L.,L L,U UL U.,U U ._ L.,L L,U
Yi = min {yjlyjz’yjlyjz’yjlyjz’yjlyjz} andyj T max{yjlyjz’yjlyjz’

yﬁyg,yﬁyg},forj =p+1..,2p-1
The following is immediate:

THEOREM 3. gﬁ\/ is the maximum d?”—1 linear functions.

REMARK 2. (i) Note in Step 1 above that,,, can be identified withy;, and

y1,, any twoy;’s, j = 1,..., p. Likewise, y,,»> can be identified with any two
variablesj suchthatj € {j € IN : 1 < j < p + 1} \ {11, 12}. Hence, there are
B+ () + ..+ (5) = X0, () = (757 different ways to introduce bilinear

relationships in Step 1.

(i) Even thoughgfAI is the maximum of exponentially manyA2) linear func-

tions, it can be represented in terms of polynomially many variables and constraints
(with the addition ofp — 1 variables and @ — 1) linear inequalities as shown in
Step 2 above).

2.3. LOGARITHMIC TRANSFORMATION (Loga)

Loga is based on a basic property of the inverse functions@xand lody).
Namely, fory; >0, =1,..., p:
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Lower bounding of log; above is straightforward via a secant lifig¢y) =

log( v /¥1
a;y; + Bj, wherea; = y(iy> andg; :=logy! —«a;y?.

J J

2.4. EXPONENT TRANSFORMATION(EXpO)

Forp = 2 and 3 we have:

1
e =g {Gn+ ¥2)? — (1 — ¥2)% = (=y1+ y2)° + (—y1 — y2)?}
1
=2 {01+ y2? = (1 — y2%}; and
1
Y1Y2Y3 =g {(yl +y2+y3)° = 1+ y2 — ya)°

— (1= y2+ ¥’ — (—=y1+y2+3)°

+ (1 —y2— )+ (—=y1+y2— ¥3)°

+(=y1— Y2+ ¥3)% — (=y1 — y2 — y3)°}

1 3 3
=4 {01+ 32+ — 1+ 32— y3)

—(1—y24+ 99+ (51— y2 — ¥9)°}

Expo is based on the following result:

THEOREM 4. For p = 2,3, ..., the product ofp variables can be separated into
the sum o271 terms of powep in linear variables:

p

1_[%— ,zpl > 2 (TTes | [+ 20 (8)

O2e{-11}  ©,e{-11} \j=2 j=2

Proof. By the multinomial theorem, we have:
p

P !
nt > 0| = > %yﬁ(@m)z SO,y (9)

k!
j=2 kit +kp=p

Use (9) to expand terms in the braces of the right hand side of (8). Group the
terms by their exponent&y, ... , k,).

First, consider the group of terms correspondingkfo= --- = k, = 1.
Summing these terms, we obtain:

j:Z:( )HyJ—P‘ZP 11—[),4

j=1
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Next, arbitrarily choose a combination @, ... , k,) with k; > 1 for at least
onei. Then, there existg # i with k; = 0. With respect to this choice of

(ki ki =00,k (T2 05) (1 + X0, ©)37) with (1, 2, .., 0,
©,) contributes the term

o; [] O y11(®zyz) 20 (@) - (@) (10)
1#1,j
There exists, however, exactly opeuple of coefficientsl, ©,, ..., -0;, ...,
©,) which, with respect to the santg,, ... ,k;(=0), ... , k,) combination, con-
tributes the term
-0, [1] O y11(®zyz)k2 (=03 - (Opy,p)r.
1#1,
Upon summation, the above term cancels out (10). As this holds for any arbit-
rarily chosen combination aky, ... , k,), we have the result. O

The following two-step procedure summarizso:

Step l.Let ¢, k = 1,...,2P~1, denote the coefficients in front of the terms in

parentheses of the right hand side of (8). Further, introduce a new variable
O, k = 1,...,2P1, for each of the quantities in the parentheses of the
right hand side of (8):

p 2[)—1

[1vi=2 a8l

j=1 k=1
where

1
Cr = pior-1 ]_[5‘]:2 ®j
O =y1+ 2,0,y

At this stage, the product has been separated into a suAT blivariate
monomials in new variableg, (k = 1, ..., 27~1) at the expense of intro-
ducing a set of linear constraints relating the new to the original problem
variables. Lower and upper bounds @ k = 1,... , 2’1, are available
by interval arithmetic operations on the boundsafj =1,... , p.

Step 2.Lower and upper bound eaefw, k = 1, ..., 2’1, using standard tech-
niques for bounding univariate functions [14]. The sum of these lower and
upper bounds provides, respectiv@g&po(y) andgg,, (y).

}for some®; € {-1,1},...,0, e {-1,1)

3. Comparison of Lower Bounding Schemes

Suppose thasz =0,j=1,..., p.Inthis case, we may assume, without loss of
generality, that aly; [0, 1] and comparer, rAT, andExpo. We first derive the
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convex and the concave envelopepéfover[0, 1]7. The results of Theorems 5 and
6 appeared earlier in [6, 15, 16] but the proofs below are new and more intuitive
and provided for the reader’s convenience.

THEOREMS. Lety € [0, 1], p > 2. Then

convyr (y) = maXI

.
-
¥

Proof. Let

P
f1(y) = Zy,- —(p—1); and

j=1

f2(y) =0

We first show thatf := max f1, f>} is a lower bounding function af”. Note
that—(p — 1) < fi(y) < 1foranyy € [0, 1]” and that, if anyy; = 0, then
P > f becausep” = 0. Suppose now that; # 0, j = 1,..., p. In this case,
define all the variables in terms f, i.e.,

yji=ajy,a; eR", j=2,...,p.
Then

j=2 j=2

14 14
g =" — i) =y [ [a; - (1 + Zaj) yi+(p—21y;

P P
g0 =pyy [[a - (1 + Za,-) ;
j=2

j=2

and
2 !
g' () =p(p—Dy;*[]a;
j=2

As g"(y1) > 0for 0 < y1 < 1, solvingg’(y1) = 0 for y; = y; we obtain the
(global) minimumg* of g:

P 1+37 ,a; P
g () =1 a | =52 - (14 ) e | t+p -1
j:2 pHJZZaJ j:2
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As <1+ PR aj) yi = 20_1; € (0, p], we have:

-1
g*(yi‘)EP—l—pT-(O,p]

This shows thap? > f. An alternate proof of this assertion is the proof of
Theorem 7. Let us now show thdtis the tightest lower bounding function @f .
Consider any”.

Case (i). Let

S1:={yel01:) y;—(p-1 <0

j=1

Note that any point inS; can be expressed as a convex combination”of-21
extreme pointg(1), ..., e(2? — 1) of S; and that

pPei) =0, i=1...,2" -1
By convexity,
pPle(i) <0, i=1...,2"-1
Hence, for any € S1, we have
2r—1 2r—1
P"(y) = @” (Z x,»em) <D hipP(e) < 0= fo(y)
i=1 i=1
wherex; > 0 and)_; A; = 1. This shows thaf; is the convex envelope gf” over
S1.
Case (ii). Let

p

S2i=1yel01:) y—(p-1>0
j=1
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2(710.1,1)

e(6):(1,0,1)

e(3(0,1,00

«(2):(1,00)

2(4):(1,1,0)
Figure 1. Planey; + yo» + y3 = 2 that separate$; andsS, in Theorem 5 forp = 3

Note that f; is a convex envelope ap” over S; N S,. For any pointy € S,
y = Ay(p) + (1 — XV)e(2?), wherey(p) € S1 N Sy, e(2°) := (1,...,1), and
A € [0, 1]. Consider any?. Then

e(y) = ?(hy(p) + (1 —1)e(2"))
< AP (y(p) + (L= 1)@’ (e(27))
< Af1(y(p) + (1= 24) f1(e(2))

= f1(y).
This proves thatf; is the convex envelope @f” over S,. As S; U S, = [0, 1],
cases (i) and (ii) prove the assertion of the theorem. O

THEOREM 6. Lety € [0, 1], p > 2. Then

concyr (y) = aninp{yj }.

Proof. Let
Si={yel0,11”:y; <y;,Vj#i}, i=1...,p.
Note that eacts; is defined by 2= + 1 extreme points: 21 points of the form

yi = 0,y; € {0,1},Vj # i, and one withy; = 1V;. Arbitrarily selectsS; and
denote bye(iq), ... , e(izp-1,1) the 21 + 1 extreme points defining;. Let

fi(y) ==y
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and note that
ﬁ(e(lk)) - (pp(e(ik)), k e 1’ ey 2p_l _|_ 1
Then, for anyy € S; and forg” with A, > 0,Y", A, = 1, we have:

or-1ig
oM =9"| D e
k=1

2r-141
> > P (elin)
k=1
2r-141
> ) e (ein)
k=1
2r141
= Y Mfilelip)
k=1
2r-141
= > fiOue(in)
k=1
2r141
=i Do et
k=1
= fi(y)
This proves thatf;(y) = y; is the concave envelope of overS;. AsU!_,S; =
[0, 1]7, we have the desired result. O

An illustration of Theorem 6 fop = 3 is provided in Figure 2.
We next studyrAT in comparison to the convex and concave envelopes derived
above.

THEOREMY7. Lety € [0, 1]7, p > 2. Then
@l () = convgr (y).

Proof. The proof is by induction op. For p = 2,

0m1—0032-02=>0
1-yD@—-y2=0

Let p > 3 and suppose that the assertion is true for alp — 1. Then

— ¢? () =max{y1+y2 — 1,0}.

p—1

P
[Tvi=w]]v =2 (11)
j=1 j=1
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¥
Plane y +ya+y3=2

£(5):(0,0.1)

(7):{0,1,1)

e(6)(1.0.1)

2(3):(0,1.0)

&4):(1,1.0)

Figure 2. lllustration of Theorem 6 fop = 3: the part off0, 13 whereys is the concave
envelope ofp3

where
p—1 p—1
Yop-2 1= l_[yj > P H(y1, -, ypo1) = MaX ZYj —(»—-2.0
Jj=1 j=1

by the induction hypothesis. Continuing from (11),

14
[T = ypy2p-2 > max{y, + yzp—2 — 1,0}
j=1

> max yvi—(p—-1,y,—10

P
j=1

14
=max{» y;—(p—1.,0
=1

=’ (). O

—rAI
THEOREM 8. Lety € [0, 1]7, p > 2. Then

@ () = concyr (¥).

Proof.For p = 2,

1-yD)y.20

yi(l—y,) >0 } = y1y2 < Min{y1, yo}.
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Supposep > 3. Then

A=y [[ri=@=yp)yzp-2 > 0= ypy2p-2 < Min{y,. y2p_2}.

By the induction hypothesis,
Vop—2 < Blar (y) = l<m\ln {yj}
and we have
Pha() < min{Lt ).y, | = min () = conegr (7).

The definition of concave envelope yields the inequality in the other direction and
completes the proof.

Fora1, we first examine the upper bounding function that it constructgfor
THEOREM 9. Lety € [0, 1]7, p > 2. Then

P (y) = concgr (y).

Proof. 92, = @2,,. For anyp > 3,

(1-y1) 1_[?:2)7]' >0 P p-1 p
M@y =0 = 11 [T T1

By the induction hypothesis,

-1
Par 1oy Yp-1) = l<rrgn_l{y,}
and
-1
= min
Par (V2o --e 5 ¥p) = 2<]<p{y,}
Recall thaip? (y) is the minimum of the convex overestlmatorsEf non-

linear upper bounding functions that utilizes in constructing?; (Refer to The-

5 , .
orem 2). By making use of only two OZI.L:Z(J, (é’l) nonlinear overestimators, we
obtained min¢ ;< ,{y;}. Hence, we have:

Pr(y) < min {y;} = convyn (y)

1<j<p

By the definition of concave envelope, we trivially have

(PAI()’) concyr (y). d

Next, we derivaﬁgI:
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THEOREM 10. Lety € [0,1]”, p > 2and P := {1,..., p}. Rearrange the
variables so thay;, > y;, > ... > y;, holds. Then
max{Zle yi —(p—1), 0} , forp =2 3;
gﬁ\]l(y) = §'7:1 Yji— (p—D+

max S . , forp >4
=1 2" {Zk:lyik —l},O

Proof. For the base case = 2, we have
@7 (iryj) = max{y; +y; — 1,0}
For anyy € [0, 117, p > 3 and any I< p, define the index sets:
P,y i= i1, ia, ... ip )}

and

P[,_l =P \ P[,_l = {ip_]+1, ,ip}.

Denote byx[ P ,_;1(y) the nonconvex nonlinear lower bounding functiorﬂﬁ:l Vj
induced byl = Fp_, for even values of, wherel is as defined in the proof of

Theorem 1. That is&[Fp_,](y) is the lower bounding function @g#? that results
when the factors for thesmallest variables are taken from (6a):

MPo A= T] w3 Do Do - Do Ya-Yin

JE€Pp—i JIEP | jo€P )y j1—1'€?p7'1
J2#E i JI=1F T s J1-2
— E E E yjl“‘yjl—z
leﬁp—l j26F17—[ J‘I*ZE?[)—I
JoFi Ji—2FJ1se 2 J1-3
+

- Z Z YirYiz

J1€Pp_ jzfﬁg—l
J2F#J1

+ ) y-1 (12)
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From/ = P,_,, we obtain:
p —_—
[]yi= AP,y
j=1

= v L vty I]vi- T w

jEPp—Z jEPp—Z jEPp—Z

p—4 1
Vi ¥ Yoy = (P =2+ Yy 207 {Zyik - l}
k =1 k=1
P p—4 !
+) Vi +yi, —(p—2+ 22’”‘4‘[ {Zyik —l} ~ Vi,
1
p—3
(p—1)+222” - ’[Zyzk —l} +Y i —(p—3)
k=1
p—3 1
—(p—1)+22p‘3"{2yik—l}

=1 k=1
—2lar(y)

By the choice ofP,_», &[FP_Z]M(y) above is the tightest among all linear lower
bounding functions ofy? constructed b1 for the casg/| = 2. It remains to
show that&[ﬁ,,_z]m (y) is also tighter than the linear lower bounding functions of
@” constructed by for the remaining case§l| = 4,6, ... ,2[Z].

Consider any 4/ < 2| %],/ an even number. First note that the tightest lower
bounding function of? by AT for |I| = [ is constructed vid = F,, ;. Hence, we
will examineA[P »—]and compara[Pp 1ar With A[Pp 2]ar above. Referring to
(12), notice that there arg’,) positive(p — 1)-cross-product termg, ) negative
(p—2)-cross-product terms, ., (,° ! ;) (=Diti-tive (p—1+4i)-cross-product terms,

, | positive (p — I + 1)-cross- product terms, and one negalfiye— /)-cross-
product term in[P p—t1- RewriteA[ P »—1] as follows:

-2

V
S

. =~
- 10+
N -

~c|JL

J
=: AP,

AP 10 = Yiy - Yip o Yigs + Vi o+ Yip o Vip = Yir -+ Vipp + &)
= AP ,-21(y) + g(»)

We will show that §A1(y) is never positive, hence provg[Fp_z]M(y) >
[_p Jar(y).
To simplify the task, let us compu@ an overestimate cg and show that

gM 0. As 8, gAI 0, this will establlsh the desired result
Note that an overestimator Qf is obtained if the piecewise linear underestim-

atormax}_ ;. i, Yi—(k=1),0} is utilized for each positivé-cross-product term of
g, wherel;, denotes the index set of variables appearing irtthess-product term
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(k:p—l+Lp—J+&.”,p—lmﬂi:LZVH,Q4;ﬂﬂ—2ﬁk:p—D)
Further note that mEDZ,-:[k, yj — (k —1),0} < min;e; {y;}.
We use mine;, {y;} for the positivek-cross-product terms ¢f and obtain the

following overestimator ogM:

R -1 [
8, = < o)+

I—k—1\ . . _
+(l ke 1) (if k is odd; or)

l—k—=1\,, .
+<l—k—2) (if kis even)} Vip i

3

+ 2 yi]7—[+4
2

+ 2 yi]7—[+3

o

00303+ 09
‘CZ?*C;?*C;?+M+C:9+C:®bWI
(0 )

S R I i 1
)08
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I—k—1\ . . _
+(l ke 2) (if k is odd; or)

l—k—1\ . .
+<l—k—1) (if kis even)} Vip i

3
1 yi]7—[+4
(1)y Ip—1+3
1
1 ylp 142
1, if | =
Vip_ss otherW|se

= oy oty . 1 if I = p;
= Yip—2 T Vip_y1 — Vip1 Vip1s otherwise
< 0.
This completes the proof. O

We have the following results:

THEOREM 11. Lety € [0, 1]7, p > 2. Then
M) b, O =eh ()

(i) ¢p, O =g 0.
Proof. Immediate from the definition of convex envelope and the factglgﬂt
is the convex envelope @f” and thatZﬁ(:l yip <L a

Considery € [1, 2]” and compare the four bounding schemes.
EXAMPLE 1. Forp = 3 and fory € [1, 2|3, we have
2f12(y1, y2) + 2f13(y1, ¥3) + f23(y2, ¥3)

—4y1 — 2y, — 2y3 + 4
2f12(y1, y2) + f13(y1, ¥3) + 2f23(y2, ¥3)
3 —2y1 —4y2 —2y3 +4
¢> =max
f12(y1, ¥2) + 2f13(y1, ¥3) + 2f23(y2, ¥3)
—2y1 — 2y, —4yz3 +4
f12(31, ¥2) + f13(y1, ¥3) + f23(y2, ¥3)
—y1—y2—y3+1
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Table 1. Values of lower bounding functions at feasible points

3 3 3 3 _
$ar $rar gLoga gExpo ¥ =y1y2y3
(1,1,1.2) 1.1 1.1 1.07 0.08 1.10
(1.5,15,15) 25 2.5 2.83 2.11 3.38
(1.5,1516) 28 26 3.03 2.33 3.6
(2,2,2) 8 8 8 6.75 8

y

3 2f12(y1, y2) +4y3; — 8
@3 =max
Sf12(y1, y2) +y3 =1

—rAl
3 yi+ye+yz—3).
@ —pO1ty2tys )’

and
~Loga

1
ggxpo :ﬂ{(yl+y2+y3)3_ 9(yl+y2+y3)} s

where

Jii i, yj) = max{

2yl-+2yj—4}
ity -1 |

Table 1 records the values of these lower bounding functionspdnd y; y,ys
at four feasible points dfl, 2]°.

Example 1 (Table 1) proves the following dominance relationships among the
four lower bounding schemes:

THEOREM 12. Lety; € [1,2], j = 1,2, 3. Then

(i) Neithergfv (y) nor ffoga (v) globally dominates the other;
(i) Neitherg® (y) nor ffoga (y) globally dominates the other.

We conclude this section with three conjectures:
CONJECTURE 1.Lety; € (0, 400),j =1,..., p. Then

0] Neithergzl (y) nor ffoga (y) globally dominates the other;
(ii) Neithergﬁ, (y) nor ffoga (y) globally dominates the other.

The above conjecture is based upon the observatlomthalndcpl’ are tighter

near the boundaries of the box whge?og is tighter in the intérior around the
middle of the box.
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CONJECTURE 2.Fory; € (0,+00),j=1,...,p,

DoY) = g5, (0)-

Fory; € (=00, +00),j=1,...,p,
(I) P =g ()
(i) or, O =¢g 0.

This conjecture is based on the observation gggpto IS never exact tg” at any

feasible pointy € [y}, y{1” for p > 2 and the difference betwegr? andg}{z’xpO
drastically increases, even at the extreme points of the hyperculpeinaseases.
Conjecture 2 was computationally verified fer=3, ... , 9 andy € [0.00001,1].

CONJECTURE 3.Lety; € (0, 400),j =1,..., p. Then

@) = el ().

4. Conclusions

In this paper, we compared the tightness of four bounding schemes that can be
incorporated into algorithms for solving programs involving multilinear functions.
We proved that recursive arithmetic intervals provide the convex envelope while
arithmetic intervals and recursive arithmetic intervals provide the concave envelope
for monomial functions over the positive orthant.
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