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Abstract. We analyze four bounding schemes for multilinear functions and theoretically compare
their tightness. We prove that one of the four schemes provides the convex envelope and that two
schemes provide the concave envelope for the product ofp variables overRp+.
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1. Introduction

This paper is concerned with the bounding of multilinear functions, which are
defined as:

t∑
i=1

ai
∏
j∈Ji

yj (1)

Multilinear functions are the building blocks of a variety of nonconvex op-
timization problems. For example, they appear in bilinear, quadratic, and mul-
tiplicative programs (cf. [13]). In addition, multilinear functions arise when the
Reformulation-Linearization Technique [18] is used to approximate the convex
hull of general classes of mathematical programs.

Bounding multilinear functions has been an important subject in mathematical
programming for over three decades now. Several linearization techniques have
been developed for reformulating multilinear 0− 1 programs into mixed-integer
linear programs (cf. [7, 8, 3, 4, 10, 12, 11]). However, there is relatively little work
done for bounding multilinear functions of continuous variables [14, 2, 9, 6, 15,
16].

McCormick [14] gives a set of four hyperplanes for boundingy1y2. Al-Khayyal
and Falk [2] prove that two of these hyperplanes provide the convex envelope of
y1y2; while the other two the concave envelope. In general, convex envelopes of
multilinear functions on a unit hypercube are known to be polyhedral. Rikun [15]
? This research was conducted while the author was at the University of Illinois at Urbana-

Champaign.
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develops necessary and sufficient conditions for polyhedrality of convex envelopes
and illustrates how these conditions may be used in constructing convex envelopes.
Rikun [15] also provides an analytic formula defining some faces of the convex
envelope of a multilinear function and gives an explicit formula for the convex
envelope of the function

p∑
i=1
j 6=i

yiyj

over the unit hypercube. Also over the unit hypercube, Sherali [16] develops ex-
plicit formulae for the convex envelopes for the multilinear functions with coef-
ficients that are all+1 or −1 via examining the convex hull representations of
these functions obtained by applying the Reformulation–Linearization Technique
[1, 17].

One can also bound (1) via bounds for monomial functions, which are defined
as:

ϕp(y) :=
p∏
j=1

yj (2)

The most common approach to bound the monomial over the unit hypercube is to
use

max


p∑
j=1

yj − p + 1,0

 (3)

as the underestimating function and

min
{
yj : j = 1, . . . , p

}
(4)

as the overestimating function. Crama [6] proves that (3) and (4), provide, re-
spectively, the convex and concave envelope for the monomial function in (2). In
addition, [6] analyzes situations where this bounding technique leads to the convex
and concave envelopes for multilinear functions over a unit hypercube[0,1]p.

It is well understood [6, 15] that bounding multilinear functions via (3)–(4)
often leads to a poor approximation and, in addition, may require more hyperplanes
than the convex envelope for (1). Unfortunately, finding the convex or concave
envelope of a multilinear function on a unit hypercube is aN P−hard problem [5].
Furthermore, most current results for envelopes of (1), as well as (3)-(4), are valid
only over the unit hypercube. An affine transformation of variables is thus required
in order to employ these results in a more general setting. Consequently, the use
of the above-mentioned bounding schemes becomes somewhat problematic in the
context of branching in branch-and-bound algorithms. This motivates the further
study of bounds for (2) fory ∈ Rp.
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Hamed [9] develops three bounding schemes for (2) wheny ∈ R3: the arith-
metic interval method, the logarithmic transformation method, and the exponent
transformation method. The present paper considers these three bounding schemes
when extended to the product of arbitrarily many variables. In addition, we develop
a fourth bounding scheme, which is a variant of the interval method. Our main
result is an analytical comparison of the bounds obtained by these four bounding
schemes.

The remainder of this paper is organized as follows. In Section 2, we derive
four bounding schemes for (2). Three of these schemes apply fory ∈ Rp and
one scheme requires strictly positive variables. Under the assumption thaty ∈
Rp+, Section 3 presents theoretical comparisons of the tightness of the bounds that
the bounding schemes provide. We provide results on lower and upper bounding
functions – it is the sign ofai in (1) that determines which of these two bounding
functions of (2) must be used in bounding (1). The results include new proofs for
the convex envelopes in (3) – (4); earlier proofs were provided in [6, 15, 16]. We
further prove that one of the four lower bounding schemes provides the convex
envelope and two provide the concave envelope of (2). Finally, conclusions are
provided in Section 4.

2. Bounding Schemes

This section develops and compares four lower bounding schemes for monomial
functions in (2). These bounds are based on arithmetic intervals, recursive applic-
ation of arithmetic intervals, logarithmic transformation, and exponent transform-
ation. We denote the four lower bounding schemes byAI, rAI, Loga, andExpo,
respectively. We adopt the following notation for any functionf :

f : a concave upper bounding function off

f : a convex lower bounding function off

f • : f of f constructed by Scheme•
f • : f of f constructed by Scheme•
concf : the concave envelope off

convf : the convex envelope off

2.1. ARITHMETIC INTERVALS (AI)

Let yj ∈ [yLj , yUj ], j = 1, . . . , p. Forp = 2,

(yU1 − y1)(y
U
2 − y2) > 0

and

(y1 − yL1 )(y2 − yL2 ) > 0
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imply:

y1y2 > max

{
y1y

U
2 + yU1 y2 − yU1 yU2

y1y
L
2 + yL1 y2 − yL1 yL2

}
= ϕ2

AI
(y)

Similarly,

(yU1 − y1)(y2− yL2 ) > 0

and

(y1 − yL1 )(yU2 − y2) > 0

imply:

y1y2 6 min

{
y1y

L
2 + yU1 y2− yU1 yL2

y1y
U
2 + yL1 y2− yL1 yU2

}
= ϕ2

AI(y)

It is well-known thatϕ2
AI

andϕ2
AI are the convex and the concave envelope of

y1y2, respectively [2]. In general,AI first generates valid underestimators of (2) by
properly multiplying the variable bounds inequalities. Each of the nonlinear terms
in each valid underestimator is then lower bounded, andϕp

AI
is finally constructed

by taking the maximum of all linear lower bounding functions of each and every
valid underestimator ofϕp. For further illustration, considerp = 3. From

(y1− yL1 )(y2− yL2 )(y3− yL3 ) > 0

(yU1 − y1)(y
U
2 − y2)(y3− yL3 ) > 0

(yU1 − y1)(y2− yL2 )(yU3 − y3) > 0

(y1 − yL1 )(yU2 − y2)(y
U
3 − y3) > 0

we obtain:

y1y2y3 > max



y1y2y
L
3 + y1y

L
2 y3+ yL1 y2y3

−y1y
L
2 y

L
3 − yL1 y2y

L
3 − yL1 yL2 y3+ yL1 yL2 yL3

y1y2y
L
3 + y1y

U
2 y3+ yU1 y2y3

−y1y
U
2 y

L
3 − yU1 y2y

L
3 − yU1 yU2 y3+ yU1 yU2 yL3

y1y2y
U
3 + y1y

L
2 y3+ yU1 y2y3

−y1y
L
2 y

U
3 − yU1 y2y

U
3 − yU1 yL2 y3+ yU1 yL2 yU3

y1y2y
U
3 + y1y

U
2 y3+ yL1 y2y3

−y1y
U
2 y

U
3 − yL1 y2y

U
3 − yL1 yU2 y3+ yL1 yU2 yU3



(5)
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Each bilinear term in (5) is then lower bounded by the maximum of two linear
functions, and the resultingϕ3

AI
is the maximum of the 32(= 4·23) linear functions.

The construct ofϕ3
AI is similar.

THEOREM 1. ϕp
AI
(p = 2,3, . . . ) is the maximum of

∏p−1
k=2 4

(pk)
k

∑b p2 c
i=0

(
p

2i

)
linear

functions, where4k denotes the number of linear functions thatAI generates to
lower boundk-cross-product terms,k = 2, . . . , p − 1.

Proof.First write out the variable bounds inequalities:

yUj − yj > 0, j = 1, . . . , p (6a)

yj − yLj > 0, j = 1, . . . , p (6b)

To obtain a lower bounding function of (2), take an even number of factors from
(6a) and multiply them by the factors from (6b) for the remaining variables. That
is, ∏

j∈I
(yUj − yj )

∏
j∈P \I

(yj − yLj ) > 0

where

P := {1,2, . . . , p}
and

I := {i : the factor involvingyi is taken from (6a)}, |I | ≡ even.

For the caseI = ∅,
p∏
j=1

(yj − yLj ) > 0

gives:

p∏
j=1

yj >
p∑
i=1

yLi

∏
j 6=i
yj −

p−1∑
i1=1

∑
i2>i1

yLi1y
L
i2

∏
j 6=i1,i2

yj + · · ·

− (−1)p−1
p∑
i=1

yi
∏
j 6=i
yLj − (−1)p

p∏
j=1

yLj

(7)

Above, each of
(
p

2

)
bilinear terms is lower bounded by a function that is the

maximum of two linear functions, each of
(
p

3

)
trilinear terms is lower bounded by

the maximum of 32 linear functions, and each of the
(
p

k

)
k-cross-product terms,

2 6 k 6 p − 1, is lower bounded by a function that is the maximum of4k linear
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functions. The resulting is a lower bounding function of (2) that is the maximum

of
∏p−1
k=2 4

(pk)
k linear functions.

Notice that the numbers of bilinear, trilinear,. . . , (p − 1)-cross-product terms
in the nonlinear lower bounding function likewise constructed for the cases|I | =
2,4, . . . ,2bp2c, respectively, are the same as those in (7) and that there are

(
p

l

)
possible ways to form|I | = l for l = 2,4, . . . ,2bp2c. This gives the desired
result. 2

As shown in Theorem 1, construction ofϕp
AI

for p > 4 embeds computation of

−ϕl
AI

, henceϕlAI for all l = p− 2, p − 4, . . . . The next theorem is concerned with
ϕ
p
AI:

THEOREM 2. ϕpAI (p = 2,3, . . . ) is the minimum of
∏p−1
k=2 4

(pk)
k

∑b p2 c
i=0

(
p

2i

)
linear

functions, where4k for k = 2, . . . , p − 1 are as defined in Theorem 1.
Proof. Refer to the proof of Theorem 1. We need to combine the inequalities

(6a)-(6b) so as to produce

−
p∏
j=1

yj > underestimating function.

We achieve this by requiring|I | to be odd this time and following the procedure
given in the proof of Theorem 1. Now apply the same reasoning as in the proof of
Theorem 1. 2

REMARK 1. The number of linear maximands forϕpAI grows doubly exponen-
tially in p. For example,ϕ4

AI is the maximum of 536,870,912 linear functions.
This implies thatAI may be practically useful only in the context of a column/row
generation scheme.

2.2. RECURSIVE ARITHMETIC INTERVALS (rAI)

The rationale behind the development ofrAI is that construction of the convex
and concave envelopes of the product of two variables can be accomplished easily.
Factorable programming techniques [14] can then be used to utilize these bounds in
building bounds for the product ofp variables. The following two-step procedure
summarizesrAI which operates on any ordering of the variables:
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Step 1.Recursively replace each bilinear term in (2) with a new variable until the
right hand side of (2) is replaced by a single variable. For example,

y1y2︸︷︷︸
=:yp+1

y3

︸ ︷︷ ︸
=:yp+2

...

. . . yp−1

︸ ︷︷ ︸
=:y2p−2

yp

︸ ︷︷ ︸
=:y2p−1

Step 2.Linearly lower bound each of thep − 1 introduced variables,i.e., the
bilinear terms, with the maximum of two linear functions:

yj = yj1yj2 > ϕ2
rAI
(yj1, yj2) = max

{
yj1y

U
j2
+ yUj1yj2 − yUj1yUj2

yj1y
L
j2
+ yLj1yj2 − yLj1yLj2

}
for all j = p + 1, . . . ,2p − 1, wherej1 and j2 are the indices of the
two original problem variables whose product is identified with variablej .
By interval arithmetic, the bounds on the introduced variables are given by

yLj := min
{
yLj1y

L
j2
, yLj1y

U
j2
, yUj1y

L
j2
, yUj1y

U
j2

}
andyUj := max

{
yLj1y

L
j2
, yLj1y

U
j2
,

yUj1y
L
j2
, yUj1y

U
j2

}
, for j = p + 1, . . . ,2p − 1.

The following is immediate:

THEOREM 3. ϕp
rAI

is the maximum of2p−1 linear functions.

REMARK 2. (i) Note in Step 1 above thatyp+1 can be identified withy11 and
y12, any twoyj ’s, j = 1, . . . , p. Likewise,yp+2 can be identified with any two
variablesj such thatj ∈ {j ∈ IN : 1 6 j 6 p + 1} \ {11,12}. Hence, there are(
p

2

) + (p−1
2

) + . . . + (22) = ∑p

i=2

(
i

2

) = (
p+1

3

)
different ways to introduce bilinear

relationships in Step 1.
(ii) Even thoughϕp

rAI
is the maximum of exponentially many (2p−1) linear func-

tions, it can be represented in terms of polynomially many variables and constraints
(with the addition ofp − 1 variables and 2(p − 1) linear inequalities as shown in
Step 2 above).

2.3. LOGARITHMIC TRANSFORMATION (Loga)

Loga is based on a basic property of the inverse functions exp(y) and log(y).
Namely, foryj > 0, j = 1, . . . , p:

p∏
j=1

yj = exp


p∑
j=1

logyj


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Lower bounding of logyj above is straightforward via a secant linef (y) =
αjyj + βj , whereαj := log

(
yUj /y

L
j

)
yUj −yLj

andβj := logyUj − αjyUj .

2.4. EXPONENT TRANSFORMATION(Expo)

Forp = 2 and 3 we have:

y1y2 =1

8

{
(y1+ y2)

2− (y1− y2)
2− (−y1+ y2)

2+ (−y1− y2)
2}

=1

4

{
(y1+ y2)

2− (y1− y2)
2
} ; and

y1y2y3 = 1

48

{
(y1+ y2+ y3)

3− (y1+ y2 − y3)
3

− (y1 − y2+ y3)
3− (−y1 + y2+ y3)

3

+ (y1 − y2− y3)
3+ (−y1 + y2− y3)

3

+(−y1− y2 + y3)
3− (−y1− y2 − y3)

3
}

= 1

24

{
(y1+ y2+ y3)

3− (y1+ y2 − y3)
3

−(y1− y2+ y3)
3+ (y1− y2 − y3)

3
}

Expo is based on the following result:

THEOREM 4. For p = 2,3, . . . , the product ofp variables can be separated into
the sum of2p−1 terms of powerp in linear variables:

p∏
j=1

yj = 1

p!2p−1

 ∑
22∈{−1,1}

· · ·
∑

2p∈{−1,1}

 p∏
j=2

2j

y1 +
p∑
j=2

2jyj

p (8)

Proof.By the multinomial theorem, we have:y1+
p∑
j=2

2jyj

p

=
∑

k1+···+kp=p

p!
k1! · · · kp!y

k1
1 (22y2)

k2 · · · (2pyp)
kp (9)

Use (9) to expand terms in the braces of the right hand side of (8). Group the
terms by their exponents(k1, . . . , kp).

First, consider the group of terms corresponding tok1 = · · · = kp = 1.
Summing these terms, we obtain:

p!
p−1∑
k=1

(
p − 1

k

) p∏
j=1

yj = p!2p−1
p∏
j=1

yj
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Next, arbitrarily choose a combination of(k1, . . . , kp) with ki > 1 for at least
one i. Then, there existsj 6= i with kj = 0. With respect to this choice of

(k1, . . . , kj (= 0), . . . , kp),
(∏p

j=22j

) (
y1+∑p

j=22jyj

)
with (1,22, . . . ,2j ,

. . . ,2p) contributes the term

2j

∏
l 6=1,j

2l

p!
k1! · · · kp!y

k1
1 (22y2)

k2 · · · (2jyj )
kj · · · (2pyp)

kp . (10)

There exists, however, exactly onep-tuple of coefficients(1,22, . . . ,−2j, . . . ,

2p) which, with respect to the same(k1, . . . , kj (= 0), . . . , kp) combination, con-
tributes the term

−2j

∏
l 6=1,j

2l

p!
k1! · · · kp!y

k1
1 (22y2)

k2 · · · (−2jyj )
kj · · · (2pyp)

kp .

Upon summation, the above term cancels out (10). As this holds for any arbit-
rarily chosen combination of(k1, . . . , kp), we have the result. 2

The following two-step procedure summarizesExpo:
Step 1.Let ck , k = 1, . . . ,2p−1, denote the coefficients in front of the terms in

parentheses of the right hand side of (8). Further, introduce a new variable
θk, k = 1, . . . ,2p−1, for each of the quantities in the parentheses of the
right hand side of (8):

p∏
j=1

yj =
2p−1∑
k=1

ckθ
p

k

where

ck = 1
p!2p−1

∏p

j=22j

θk = y1+∑p

j=22jyj

}
for some22 ∈ {−1,1}, . . . ,2p ∈ {−1,1}

At this stage, the product has been separated into a sum of 2p−1 univariate
monomials in new variablesθk (k = 1, . . . ,2p−1) at the expense of intro-
ducing a set of linear constraints relating the new to the original problem
variables. Lower and upper bounds forθk, k = 1, . . . ,2p−1, are available
by interval arithmetic operations on the bounds ofyj , j = 1, . . . , p.

Step 2.Lower and upper bound eachckθ
p

k , k = 1, . . . ,2p−1, using standard tech-
niques for bounding univariate functions [14]. The sum of these lower and
upper bounds provides, respectively,ϕp

Expo
(y) andϕpExpo(y).

3. Comparison of Lower Bounding Schemes

Suppose thatyLj = 0, j = 1, . . . , p. In this case, we may assume, without loss of
generality, that allyj ∈ [0,1] and compareAI, rAI, andExpo. We first derive the
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convex and the concave envelope ofϕp over[0,1]p . The results of Theorems 5 and
6 appeared earlier in [6, 15, 16] but the proofs below are new and more intuitive
and provided for the reader’s convenience.

THEOREM 5. Lety ∈ [0,1]p, p > 2. Then

convϕp (y) = max


p∑
j=1

yj − (p − 1),0

 .
Proof.Let

f1(y) :=
p∑
j=1

yj − (p − 1); and

f2(y) := 0

We first show thatf := max{f1, f2} is a lower bounding function ofϕp. Note
that−(p − 1) 6 f1(y) 6 1 for anyy ∈ [0,1]p and that, if anyyj = 0, then
ϕp > f becauseϕp = 0. Suppose now thatyj 6= 0, j = 1, . . . , p. In this case,
define all the variables in terms ofy1, i.e.,

yj := ajy1, aj ∈ R+, j = 2, . . . , p.

Then

g(y1) := ϕp(y)− f1(y) = yp1
p∏
j=2

aj −
1+

p∑
j=2

aj

 y1+ (p − 1);

g′(y1) = pyp−1
1

p∏
j=2

aj −
1+

p∑
j=2

aj

 ;
and

g′′(y1) = p(p − 1)yp−2
1

p∏
j=2

aj .

As g′′(y1) > 0 for 0 < y1 6 1, solvingg′(y1) = 0 for y1 = y∗1 we obtain the
(global) minimumg∗ of g:

g∗(y∗1) = y∗1


p∏
j=2

aj

(
1+∑p

j=2 aj

p
∏p

j=2 aj

)
−
1+

p∑
j=2

aj

+ p − 1
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= y∗1
−p − 1

p

1+
p∑
j=2

aj

+ p − 1

= p − 1− p − 1

p

1+
p∑
j=2

aj

 y∗1
As
(
1+∑p

j=2 aj

)
y∗1 =

∑p

j=1 y
∗
j ∈ (0, p], we have:

g∗(y∗1) ∈ p − 1− p − 1

p
· (0, p]

= [0, p − 1)

This shows thatϕp > f . An alternate proof of this assertion is the proof of
Theorem 7. Let us now show thatf is the tightest lower bounding function ofϕp.
Consider anyϕp.

Case (i). Let

S1 :=
y ∈ [0,1]p :

p∑
j=1

yj − (p − 1) 6 0


Note that any point inS1 can be expressed as a convex combination of 2p − 1
extreme pointse(1), . . . , e(2p − 1) of S1 and that

ϕp(e(i)) = 0, i = 1, . . . ,2p − 1.

By convexity,

ϕp(e(i)) 6 0, i = 1, . . . ,2p − 1.

Hence, for anyy ∈ S1, we have

ϕp(y) = ϕp
(

2p−1∑
i=1

λie(i)

)
6

2p−1∑
i=1

λiϕ
p(e(i)) 6 0= f2(y)

whereλi > 0 and
∑

i λi = 1. This shows thatf2 is the convex envelope ofϕp over
S1.

Case (ii). Let

S2 :=
y ∈ [0,1]p :

p∑
j=1

yj − (p − 1) > 0


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Figure 1. Planey1 + y2+ y3 = 2 that separatesS1 andS2 in Theorem 5 forp = 3

Note thatf1 is a convex envelope ofϕp over S1 ∩ S2. For any pointy ∈ S2,
y = λy(p) + (1 − λ)e(2p), wherey(p) ∈ S1 ∩ S2, e(2p) := (1, . . . ,1), and
λ ∈ [0,1]. Consider anyϕp. Then

ϕp(y) = ϕp(λy(p)+ (1− λ)e(2p))
6 λϕp(y(p))+ (1− λ)ϕp(e(2p))
6 λf1(y(p))+ (1− λ)f1(e(2

p))

= f1(y).

This proves thatf1 is the convex envelope ofϕp overS2. As S1 ∪ S2 = [0,1]p ,
cases (i) and (ii) prove the assertion of the theorem. 2
THEOREM 6. Lety ∈ [0,1]p, p > 2. Then

concϕp (y) = min
16j6p

{yj }.

Proof.Let

Si := {y ∈ [0,1]p : yi 6 yj ,∀j 6= i}, i = 1, . . . , p.

Note that eachSi is defined by 2p−1 + 1 extreme points: 2p−1 points of the form
yi = 0, yj ∈ {0,1},∀j 6= i, and one withyj = 1∀j . Arbitrarily selectSi and
denote bye(i1), . . . , e(i2p−1+1) the 2p−1 + 1 extreme points definingSi. Let

fi(y) := yi
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and note that

fi(e(ik)) = ϕp(e(ik)), k = 1, . . . ,2p−1+ 1.

Then, for anyy ∈ Si and forϕp with λk > 0,
∑

k λk = 1, we have:

ϕp(y) = ϕp
2p−1+1∑

k=1

λke(ik)


>

2p−1+1∑
k=1

λkϕ
p(e(ik))

>
2p−1+1∑
k=1

λkϕ
p(e(ik))

=
2p−1+1∑
k=1

λkfi(e(ik))

=
2p−1+1∑
k=1

fi(λke(ik))

= fi
2p−1+1∑

k=1

λke(ik)


= fi(y)

This proves thatfi(y) = yi is the concave envelope ofϕp overSi. As ∪pi=1Si =[0,1]p, we have the desired result. 2
An illustration of Theorem 6 forp = 3 is provided in Figure 2.
We next studyrAI in comparison to the convex and concave envelopes derived

above.

THEOREM 7. Lety ∈ [0,1]p, p > 2. Then

ϕp
rAI
(y) = convϕp(y).

Proof.The proof is by induction onp. Forp = 2,

(y1 − 0)(y2− 0) > 0
(1− y1)(1− y2) > 0

∣∣∣∣ H⇒ ϕ2
rAI
(y) = max{y1+ y2 − 1,0}.

Let p > 3 and suppose that the assertion is true for alll 6 p − 1. Then

p∏
j=1

yj = yp
p−1∏
j=1

yj = ypy2p−2, (11)
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Figure 2. Illustration of Theorem 6 forp = 3: the part of[0, 1]3 wherey3 is the concave
envelope ofϕ3

where

y2p−2 :=
p−1∏
j=1

yj > ϕp−1
rAI
(y1, . . . , yp−1) = max


p−1∑
j=1

yj − (p − 2),0


by the induction hypothesis. Continuing from (11),

p∏
j=1

yj = ypy2p−2 > max
{
yp + y2p−2− 1,0

}

> max


p∑
j=1

yj − (p − 1), yp − 1,0


= max


p∑
j=1

yj − (p − 1),0


= ϕp

rAI
(y). 2

THEOREM 8. Lety ∈ [0,1]p, p > 2. Then

ϕ
p
rAI (y) = concϕp (y).

Proof.Forp = 2,

(1− y1)y2 > 0
y1(1− y2) > 0

}
H⇒ y1y2 6 min{y1, y2}.
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Supposep > 3. Then

(1− yp)
p−1∏
j=1

yj = (1− yp)y2p−2 > 0H⇒ ypy2p−2 6 min{yp, y2p−2}.

By the induction hypothesis,

y2p−2 6 ϕp−1
rAI (y) = min

16j6p−1
{yj }

and we have

ϕ
p
rAI(y) 6 min

{
ϕ
p−1
rAI (y), yp

}
= min

16j6p
{yj } = concϕp (y).

The definition of concave envelope yields the inequality in the other direction and
completes the proof.

ForAI, we first examine the upper bounding function that it constructs forϕp:

THEOREM 9. Lety ∈ [0,1]p, p > 2. Then

ϕ
p
AI (y) = concϕp (y).

Proof.ϕ2
AI = ϕ2

rAI. For anyp > 3,

(1− y1)
∏p

j=2 yj > 0∏p−1
j=1 yj (1− yp) > 0

∣∣∣∣∣∣ H⇒
p∏
j=1

yj 6 min


p−1∏
j=1

yj ,

p∏
j=2

yj

 .
By the induction hypothesis,

ϕ
p−1
AI (y1, . . . , yp−1) = min

16j6p−1
{yj }

and

ϕ
p−1
AI (y2, . . . , yp) = min

26j6p
{yj }.

Recall thatϕpAI(y) is the minimum of the convex overestimators of
∑b p2 c

i=0

(
p

2i

)
non-

linear upper bounding functions thatAI utilizes in constructingϕpAI (Refer to The-

orem 2). By making use of only two of
∑b p2 c

i=0

(
p

2i

)
nonlinear overestimators, we

obtained min16j6p{yj }. Hence, we have:

ϕ
p
AI(y) 6 min

16j6p
{yj } = convϕp(y)

By the definition of concave envelope, we trivially have

ϕ
p
AI(y) > concϕp (y). 2

Next, we deriveϕp
AI

:
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THEOREM 10. Let y ∈ [0,1]p , p > 2 and P := {1, . . . , p}. Rearrange the
variables so thatyi1 > yi2 > . . . > yip holds. Then

ϕp
AI
(y) =


max

{∑p

j=1 yj − (p − 1),0
}
, for p = 2,3;

max


∑p

j=1 yj − (p − 1)+∑p−3
l=1 2p−3−l

{∑l
k=1 yik − l

}
,0

 , for p > 4.

Proof.For the base casep = 2, we have

ϕp
AI
(yi, yj ) = max{yi + yj − 1,0}.

For anyy ∈ [0,1]p, p > 3 and any l6 p, define the index sets:

Pp−l := {i1, i2, . . . , ip−l}
and

Pp−l := P \ Pp−l = {ip−l+1, . . . , ip}.
Denote byλ[Pp−l](y) the nonconvex nonlinear lower bounding function of

∏p

j=1 yj

induced byI = Pp−l for even values ofl, whereI is as defined in the proof of
Theorem 1. That is,λ[Pp−l](y) is the lower bounding function ofϕp that results
when the factors for thel smallest variables are taken from (6a):

λ[Pp−l](y) :=
∏

j∈Pp−l
yj


∑

j1∈Pp−l

∑
j2∈Pp−l
j2 6=j1

. . .
∑

jl−1∈Pp−l
jl−1 6=j1,... ,jl−2

yj1 . . . yjl−1

−
∑

j1∈Pp−l

∑
j2∈Pp−l
j2 6=j1

. . .
∑

jl−2∈Pp−l
jl−2 6=j1,... ,jl−3

yj1 . . . yjl−2

+ · · ·
−

∑
j1∈Pp−l

∑
j2∈Pp−l
j2 6=j1

yj1yj2

+
∑
j∈Pp−l

yj − 1

 (12)

Consider anyp > 3. I = ∅ gives

p∏
j=1

yj > 0.
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FromI = Pp−2, we obtain:

p∏
j=1

yj > λ[Pp−2](y)

= yip−1

∏
j∈Pp−2

yj + yip
∏

j∈Pp−2

yj −
∏

j∈Pp−2

yj

>
p−2∑
k=1

yik + yip−1 − (p − 2)+
p−4∑
l=1

2p−4−l
{

l∑
k=1

yik − l
}

+
p−2∑
k=1

yik + yip − (p − 2)+
p−4∑
l=1

2p−4−l
{

l∑
k=1

yik − l
}
− yip−2

=
p∑
j=1

yj − (p − 1)+ 2
p−4∑
l=1

2p−4−l
{

l∑
k=1

yik − l
}
+

p−3∑
k=1

yik − (p − 3)

=
p∑
j=1

yj − (p − 1)+
p−3∑
l=1

2p−3−l
{

l∑
k=1

yik − l
}

=: λ[P p−2]AI(y)
By the choice ofPp−2, λ[Pp−2]AI(y) above is the tightest among all linear lower
bounding functions ofϕp constructed byAI for the case|I | = 2. It remains to
show thatλ[P p−2]AI(y) is also tighter than the linear lower bounding functions of
ϕp constructed byAI for the remaining cases,|I | = 4,6, . . . ,2bp2c.

Consider any 46 l6 2bp2c, l an even number. First note that the tightest lower
bounding function ofϕp by AI for |I | = l is constructed viaI = Pp−l. Hence, we
will examineλ[Pp−l] and compareλ[P p−l]AI with λ[P p−2]AI above. Referring to
(12), notice that there are

(
l

l−1

)
positive(p−1)-cross-product terms,

(
l

l−2

)
negative

(p−2)-cross-product terms,. . . ,
(
l

l−i
)
(−1)i+1-tive (p−l+i)-cross-product terms,

. . . , l positive (p − l + 1)-cross-product terms, and one negative(p − l)-cross-
product term inλ[Pp−l]. Rewriteλ[Pp−l] as follows:

λ[Pp−l](y) = yi1 . . . yip−2yip−1 + yi1 . . . yip−2yip − yi1 . . . yip−2 + g(y)
= λ[Pp−2](y) + g(y)

We will show that g
AI
(y) is never positive, hence proveλ[Pp−2]AI(y) >

λ[P p−l]AI(y).
To simplify the task, let us computêg

AI
, an overestimate ofg

AI
and show that

ĝ
AI
6 0. Asg

AI
6 ĝ

AI
6 0, this will establish the desired result.

Note that an overestimator ofg
AI

is obtained if the piecewise linear underestim-
ator max{∑j∈Iki yj−(k−1),0} is utilized for each positivek-cross-product term of
g, whereIki denotes the index set of variables appearing in thek-cross-product term
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(k = p− l+1, p− l+3, . . . , p−1 and i= 1,2, . . . ,
(

l

k−(p−l)
)
(−2 if k = p−1)).

Further note that max{∑j=Iki yj − (k − 1),0} 6 minj∈Iki {yj }.
We use minj∈Iki {yj } for the positivek-cross-product terms ofg and obtain the

following overestimator ofg
AI

:

ĝ
AI
(y) =

{(
l − 1

0

)
+
(
l − 1

2

)
+
(
l − 1

4

)
+ · · · +

(
l − 1

l − 4

)
+
(
l − 1

l − 2

)
− 1

}
yip

+
{(
l − 2

0

)
+
(
l − 2

2

)
+
(
l − 2

4

)
+ · · · +

(
l − 2

l − 4

)
+
(
l − 2

l − 2

)
− 1

}
yip−1

+
{(
l − 3

0

)
+
(
l − 3

2

)
+
(
l − 3

4

)
+ · · · +

(
l − 3

l − 4

)}
yip−2

+
{(
l − 4

0

)
+
(
l − 4

2

)
+
(
l − 4

4

)
+ · · · +

(
l − 4

l − 4

)}
yip−3

+ · · ·
+
{(
l − k − 1

0

)
+
(
l − k − 1

2

)
+ · · ·

+
(
l − k − 1

l − k − 1

)
(if k is odd; or)

+
(
l − k − 1

l − k − 2

)
(if k is even)

}
yip−k

+ · · ·
+
{(

3

0

)
+
(

3

2

)}
yip−l+4

+
{(

2

0

)
+
(

2

2

)}
yip−l+3

+
(

1

0

)
yip−l+2

+
(

0

0

)
yip−l+1

−
{(
l − 1

1

)
+
(
l − 1

3

)
+
(
l − 1

5

)
+ · · · +

(
l − 1

l − 5

)
+
(
l − 1

l − 3

)}
yip

−
{(
l − 2

1

)
+
(
l − 2

3

)
+
(
l − 2

5

)
+ · · · +

(
l − 2

l − 5

)
+
(
l − 2

l − 3

)}
yip−1

−
{(
l − 3

1

)
+
(
l − 3

3

)
+
(
l − 3

5

)
+ · · · +

(
l − 3

l − 3

)
− 1

}
yip−2

−
{(
l − 4

1

)
+
(
l − 4

3

)
+
(
l − 4

5

)
+ · · · +

(
l − 4

l − 5

)}
yip−3

− · · ·
−
{(
l − k − 1

1

)
+
(
l − k − 1

3

)
+ · · ·
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+
(
l − k − 1

l − k − 2

)
(if k is odd; or)

+
(
l − k − 1

l − k − 1

)
(if k is even)

}
yip−k

− · · ·
−
{(

3

1

)
+
(

3

3

)}
yip−l+4

−
(

2

1

)
yip−l+3

−
(

1

1

)
yip−l+2

−
{

1, if l = p;

yip−l , otherwise

= yip−2 + yip−l+1 − yip−1 −
{

1, if l = p;

yip−l , otherwise

6 0.

This completes the proof. 2
We have the following results:

THEOREM 11. Lety ∈ [0,1]p , p > 2. Then
(i) ϕp

rAI
(y) > ϕp

AI
(y)

(ii) ϕp
rAI
(y) > ϕp

Expo
(y).

Proof. Immediate from the definition of convex envelope and the fact thatϕp
rAI

is the convex envelope ofϕp and that
∑l

k=1 yik 6 l. 2
Considery ∈ [1,2]p and compare the four bounding schemes.

EXAMPLE 1. Forp = 3 and fory ∈ [1,2]3, we have

ϕ3
AI
=max



2f12(y1, y2)+ 2f13(y1, y3)+ f23(y2, y3)

−4y1 − 2y2 − 2y3 + 4

2f12(y1, y2)+ f13(y1, y3)+ 2f23(y2, y3)

−2y1 − 4y2 − 2y3 + 4

f12(y1, y2)+ 2f13(y1, y3)+ 2f23(y2, y3)

−2y1 − 2y2 − 4y3 + 4

f12(y1, y2)+ f13(y1, y3)+ f23(y2, y3)

−y1− y2− y3+ 1



;
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Table 1. Values of lower bounding functions at feasible points

y ϕ3
AI

ϕ3
rAI

ϕ3
Loga

ϕ3
Expo

ϕ3 = y1y2y3

(1,1,1.1) 1.1 1.1 1.07 0.08 1.10

(1.5,1.5,1.5) 2.5 2.5 2.83 2.11 3.38

(1.5,1.5,1.6) 2.8 2.6 3.03 2.33 3.6

(2,2,2) 8 8 8 6.75 8

ϕ3
rAI
=max

{
2f12(y1, y2)+ 4y3 − 8

f12(y1, y2)+ y3 − 1

}
;

ϕ3
Loga
=e(y1+y2+y3−3); and

ϕ3
Expo
= 1

24

{
(y1+ y2+ y3)

3− 9(y1+ y2 + y3)
}
,

where

fij (yi, yj ) = max

{
2yi + 2yj − 4

yi + yj − 1

}
.

Table 1 records the values of these lower bounding functions andϕ3 = y1y2y3

at four feasible points of[1,2]3.
Example 1 (Table 1) proves the following dominance relationships among the

four lower bounding schemes:

THEOREM 12. Letyj ∈ [1,2], j = 1,2,3. Then

(i) Neitherϕ3
AI
(y) nor ϕ3

Loga
(y) globally dominates the other;

(ii) Neitherϕ3
rAI
(y) nor ϕ3

Loga
(y) globally dominates the other.

We conclude this section with three conjectures:

CONJECTURE 1.Letyj ∈ (0,+∞), j = 1, . . . , p. Then

(i) Neitherϕp
AI
(y) nor ϕp

Loga
(y) globally dominates the other;

(ii) Neitherϕp
rAI
(y) nor ϕp

Loga
(y) globally dominates the other.

The above conjecture is based upon the observation thatϕp
AI

andϕp
rAI

are tighter
near the boundaries of the box whileϕp

Loga
is tighter in the interior around the

middle of the box.
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CONJECTURE 2.For yj ∈ (0,+∞), j = 1, . . . , p,

ϕp
Loga

(y) > ϕp
Expo

(y).

For yj ∈ (−∞,+∞), j = 1, . . . , p,

(i) ϕp
AI
(y) > ϕp

Expo
(y);

(ii) ϕp
rAI
(y) > ϕp

Expo
(y).

This conjecture is based on the observation thatϕp
Expo

is never exact toϕp at any

feasible pointy ∈ [yLj , yUj ]p for p > 2 and the difference betweenϕp andϕp
Expo

drastically increases, even at the extreme points of the hypercube, asp increases.
Conjecture 2 was computationally verified forp = 3, . . . ,9 andy ∈ [0.00001,1].

CONJECTURE 3.Letyj ∈ (0,+∞), j = 1, . . . , p. Then

ϕp
AI
(y) > ϕp

rAI
(y).

4. Conclusions

In this paper, we compared the tightness of four bounding schemes that can be
incorporated into algorithms for solving programs involving multilinear functions.
We proved that recursive arithmetic intervals provide the convex envelope while
arithmetic intervals and recursive arithmetic intervals provide the concave envelope
for monomial functions over the positive orthant.
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